skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rich, Michael R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present the discovery of NGC253-SNFC-dw1, a new satellite galaxy in the remote stellar halo of the Sculptor Group spiral, NGC 253. The system was revealed using deep, resolved star photometry obtained as part of the Subaru Near-Field Cosmology Survey that uses the Hyper Suprime-Cam on the Subaru Telescope. Although rather luminous (MV= −11.7 ± 0.2) and massive (M*∼ 1.25 × 107M), the system is one of the most diffuse satellites yet known, with a half-light radius ofRh= 3.37 ± 0.36 kpc and an average surface brightness of ∼30.1 mag arcmin−2within theRh. The color–magnitude diagram shows a dominant, old (∼10 Gyr), and metal-poor ([M/H] = −1.5 ± 0.1 dex) stellar population, as well as several candidate thermally pulsing asymptotic giant branch stars. The distribution of red giant branch stars is asymmetrical and displays two elongated tidal extensions pointing toward NGC 253, suggestive of a highly disrupted system being observed at apocenter. NGC253-SNFC-dw1 has a size comparable to that of the puzzling Local Group dwarfs Andromeda XIX and Antlia 2 but is 2 magnitudes brighter. While unambiguous evidence of tidal disruption in these systems has not yet been demonstrated, the morphology of NGC253-SNFC-dw1 clearly shows that this is a natural path to produce such diffuse and extended galaxies. The surprising discovery of this system in a previously well-searched region of the sky emphasizes the importance of surface-brightness limiting depth in satellite searches. 
    more » « less
  2. Abstract The Milky Way Bulge extra-tidal star survey is a spectroscopic survey with the goal of identifying stripped globular cluster stars from inner Galaxy clusters. In this way, an indication of the fraction of metal-poor bulge stars that originated from globular clusters can be determined. We observed and analyzed stars in and around BH 261, an understudied globular cluster in the bulge. From seven giants within the tidal radius of the cluster, we measured an average heliocentric radial velocity of 〈RV〉 = −61 ± 2.6 km s−1with a radial velocity dispersion of 〈σ〉 = 6.1 ± 1.9 km s−1. The large velocity dispersion may have arisen from tidal heating in the cluster’s orbit about the Galactic center, or because BH 261 has a high dynamical mass as well as a high mass-to-light ratio. From spectra of five giants, we measure an average metallicity of 〈[Fe/H]〉 = −1.1 ± 0.2 dex. We also spectroscopically confirm an RR Lyrae star in BH 261, which yields a distance to the cluster of 7.1 ± 0.4 kpc. Stars with 3D velocities and metallicities consistent with BH 261 reaching to ∼0.°5 from the cluster are identified. A handful of these stars are also consistent with the spatial distribution of potential debris from models focusing on the most recent disruption of the cluster. 
    more » « less
  3. AM CVn systems are a rare type of accreting binary that consists of a white dwarf and a helium-rich, degenerate donor star. Using the Zwicky Transient Facility (ZTF), we searched for new AM CVn systems by focusing on blue, outbursting stars. We first selected outbursting stars using the ZTF alerts. We cross-matched the candidates with Gaia and Pan-STARRS catalogs. The initial selection of candidates based on the Gaia BP-RP contains 1751 unknown objects. We used the Pan-STARRS g-r and r-i color in combination with the Gaia color to identify 59 high-priority candidates. We obtained identification spectra of 35 sources, of which 18 are high priority candidates, and discovered 9 new AM CVn systems and one magnetic CV which shows only He-II lines. Using the outburst recurrence time, we estimate the orbital periods which are in the range of 29 to 50 minutes. We conclude that targeted followup of blue, outbursting sources is an efficient method to find new AM CVn systems, and we plan to followup all candidates we identified to systematically study the population of outbursting AM CVn systems. 
    more » « less